STS-graphs of perfect codes mod kernel
نویسندگان
چکیده
We show that a 1-error-correcting code C is ‘foldable’ over its kernel via the Steiner triple systems associated to the codewords whenever C is perfect. The resulting ‘folding’ produces a graph invariant that for Vasil’ev codes of length 15 is complete, showing in particular that there exist nonadditive propelinear codes and just one nonlinear Vasil’ev additive code up to equivalence.
منابع مشابه
Quasi-Perfect Lee Codes from Quadratic Curves over Finite Fields
Golomb and Welch conjectured in 1970 that there only exist perfect Lee codes for radius t = 1 or dimension n = 1, 2. It is admitted that the existence and the construction of quasi-perfect Lee codes have to be studied since they are the best alternative to the perfect codes. In this paper we firstly highlight the relationships between subset sums, Cayley graphs, and Lee linear codes and present...
متن کاملTotal perfect codes, OO-irredundant and total subdivision in graphs
Let $G=(V(G),E(G))$ be a graph, $gamma_t(G)$. Let $ooir(G)$ be the total domination and OO-irredundance number of $G$, respectively. A total dominating set $S$ of $G$ is called a $textit{total perfect code}$ if every vertex in $V(G)$ is adjacent to exactly one vertex of $S$. In this paper, we show that if $G$ has a total perfect code, then $gamma_t(G)=ooir(G)$. As a consequence, ...
متن کاملSQS-graphs of extended 1-perfect codes
An extended 1-perfect code C folds over its kernel via the Steiner quadruple systems associated with its codewords. The resulting folding, proposed as a graph invariant for C, distinguishes among the 361 nonlinear codes C of kernel dimension κ with 9 ≥ κ ≥ 5 obtained via Solov’eva-Phelps doubling construction. Each of the 361 resulting graphs has most of its nonloop edges expressible in terms o...
متن کاملSQS-graphs of Solov'eva-Phelps codes
A binary extended 1-perfect code C folds over its kernel via the Steiner quadruple systems associated with its codewords. The resulting folding, proposed as a graph invariant for C, distinguishes among the 361 nonlinear codes C of kernel dimension κ obtained via Solov’eva-Phelps doubling construction, where 9 ≥ κ ≥ 5. Each of the 361 resulting graphs has most of its nonloop edges expressible in...
متن کاملSome progress on the existence of 1-rotational Steiner triple systems
A Steiner triple system of order v (briefly STS(v)) is 1-rotational under G if it admits G as an automorphism group acting sharply transitively on all but one point. The spectrum of values of v for which there exists a 1-rotational STS(v) under a cyclic, an abelian, or a dicyclic group, has been established in Phelps and Rosa (Discrete Math 33:57–66, 1981), Buratti (J Combin Des 9:215–226, 2001...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 295 شماره
صفحات -
تاریخ انتشار 2005